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and axisymmetric flows

By PETER L. READ†
Department of Physics, University of Oxford, UK

(Received 31 May 2002 and in revised form 17 March 2003)

The effective contribution to the lateral heat transport in a rotating differentially
heated annulus attributable to fully developed baroclinic eddies is determined by the
combined use of laboratory measurements and numerical simulations. The total heat
transport is determined in the laboratory by real-time calorimetry to a precision of
around ±2.5% over a wide range of parameters sampling a wide cross-section
of the regular baroclinic wave regime accessible in the rotating annulus up to
the transition to geostrophic turbulence. High-resolution numerical simulations of
steady axisymmetric flow in the rotating annulus were carried out under comparable
parametric conditions to the laboratory experiments, to determine the contribution
to total heat transport due to the axisymmetric boundary-layer circulation in the
system. The difference between the Nusselt or Péclet numbers determined in these
two ways enables the heat transport attributable to the presence of the baroclinic
eddies to be determined unambiguously. The variation of the resulting excess Péclet
number with external parameters appears to be consistent with predictions from a
weakly nonlinear model of baroclinic instability within the regular baroclinic wave
regime, at least for weak–moderate supercriticality, whereas at higher rotation rates
a parametrization based on the linear instability approach of Green (1970) may be
more appropriate. This approach seems to offer an accurate and incisive means of
evaluating schemes proposed to parametrize the transport properties of baroclinic
eddies in a variety of models used in geophysical and engineering applications.

1. Introduction
The problem of how to represent the transport of heat and other quantities by

unresolved processes in numerical models is ubiquitous in a variety of disciplines. In
the atmospheric sciences, there is a long history of attempts to quantify the effects
of large- and small-scale non-axisymmetric eddies on the zonally symmetric structure
and circulation (e.g. Green 1970; Stone 1972, 1978; Pfeffer & Barcilon 1978; Taylor
1980), although the urgency of such a task has become less acute in recent years as the
computational cost of eddy-resolving atmospheric models has reduced (apart, perhaps,
from their use in problems of very long-term climate change). In oceanography,
there remains an urgent need to develop an accurate means of parametrizing the
effects of energetic baroclinic eddies within coarse-resolution ocean models. Despite
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major advances in recent years in available computing power and the capabilities of
numerical models to simulate many features of the general circulation of the oceans,
the resolution required by such models to resolve adequately the structure and
behaviour of even the most energetic baroclinic eddies (around 0.1◦ in latitude and
longitude according to Smith et al. 2000) remains well beyond that practicable for
climate studies. For the foreseeable future, therefore, virtually all such models used for
studies of climate and global change will need to parametrize the transfer properties
of the dominant energy-containing eddies in the oceans. The practical need to improve
the parametric representation of geostrophic eddies for the study of the oceans on
climatic timescales thus remains as urgent as ever.

Such problems are not unique to the geophysical world, but similar issues also arise
in the design and operation of large-scale rotating machinery in which free thermal
convection regimes may lead to significant heat transport which is difficult to predict
without the use of expensive computational fluid dynamics (CFD) codes (e.g. Owen
& Rogers 1995). In the present paper, we concentrate on the problem of determining
and quantifying the integrated transport of heat due to baroclinic eddies, which has
its main application in the fields of oceanography and climate modelling, although
the methodology outlined herein may also be useful in other disciplines.

1.1. Approaches to parametrization

Despite the widely acknowledged importance of the geostrophic eddy field in the
ocean, its representation in large-scale ocean models is often rudimentary. A variety
of approaches to the problem of parametrizing baroclinic transports have been
adopted over the past 30 years, ranging from simple ideas based on linear and weakly
nonlinear baroclinic instability models (e.g. Green 1970; Stone 1972, 1978; Pfeffer &
Barcilon 1978) to more sophisticated treatments using the transformed Eulerian mean
formalism and the theory of eddy–mean flow interaction (Gent & McWilliams 1990;
Gent et al. 1995; Visbeck et al. 1997; Treguier, Held & Larichev 1997).

Current parametrizations generally assume either that conserved tracers such as
heat, salinity or passive tracer (whose concentration is denoted for the time being by
s) are diffused down the large-scale gradient, so that eddy fluxes are related to mean
quantities either via equations of the form

v′s ′ = −K∇s, (1.1)

where the overbar denotes an averaging operator in space and/or time and the prime
denotes departures from that mean, or that they are related to a spatially averaged
‘Transformed Eulerian Mean’ circulation which is, in turn, derived from the form
of the horizontal eddy buoyancy flux v′b′. K in the most general case in (1.1) is a
(tensor) transfer coefficient (e.g. Plumb & Mahlman 1987) that is assumed to depend,
crucially, on the local, averaged quantities. This representation raises many questions,
among the most important being: Is such a form physically reasonable? What value
should K have? Should K vary in space and time?

It has long been recognized that K is often strongly anisotropic. Thus the (nearly)
horizontal transfer due to baroclinic eddies vastly exceeds the vertical mixing due
to internal wave breaking (see Large, McWilliams & Doney 1994 for a review
of this topic which is not considered further here). Work based on analyses of
baroclinic instability by Green (1970) and Stone (1972) suggested that vigorous eddy
transfer should occur along surfaces inclined at half the average isopycnal slope.
Recently, several studies have advocated a strictly adiabatic closure (Redi 1982;
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Gent & McWilliams 1990; Gent et al. 1995). Moreover, a clear distinction between
the symmetric (diffusive) and anti-symmetric (advective) parts of the K-tensor has
been made (see also Plumb & Mahlman 1987; Griffies 1998; Greatbatch 1998).
Current theory focuses on constraints for K based on physically realizable boundary
conditions (Treguier et al. 1997), linear instability analysis (Killworth 1997) and the
link to large-scale potential vorticity (Greatbatch 1998; Marshall, Williams & Lee
1999). The latter also permits a partial treatment of Reynolds stresses for coarse-
resolution ocean general circulation models, a topic that has, otherwise, received very
little attention. Nevertheless, despite this intense activity and the pressing need to
resolve this issue, there is no widespread support for (1.1) or an accurate theory
for K.

1.2. Testing closure theory

Large-scale ocean modellers using these recent parametrizations have often found
significant improvements in their solutions (Danabasoglu, McWilliams & Gent 1994;
Robitaille & Weaver 1995; Wright 1997) in comparison with observational constraints.
However, this success clearly does not constitute a comprehensive evaluation of the
theories. The most stringent tests to date typically determine the dependence of K
(determined via direct computation of eddy variances or local fluxes) on the large-
scale fields from heuristic theoretical arguments or empirically from observations or
eddy-resolving models.

Several groups in recent years have attempted to develop closures for
parametrizations based on the above approaches using results from high-resolution
model simulations (Visbeck et al. 1997; Haine & Marshall 1998; Held & Larichev
1996; Larichev & Held 1995; Pavan & Held 1996). These model studies seek to resolve
the detailed behaviour of individual eddies in a variety of idealized circumstances, from
which the average transport properties of the eddies can be obtained diagnostically.
Visbeck et al. (1997), for example, make use of a limited range of idealized eddy-
resolving numerical simulations to test their scheme, and this continues to be the
most common overall approach to testing the closure schemes. Such approaches are
themselves subject to substantial uncertainties, however, due to the severe limitations
of the high-resolution models in terms of resolution with respect to the smallest
eddies, ranges of accessible parameters, approximations and systematic errors due
to numerical schemes. Further, this kind of study has generally attempted only
to diagnose the Eulerian eddy fluxes from the resolved model fields, rather than
determining the total integrated transport by the flow. Since the pioneering work of
Andrews & McIntyre (1978), it has been appreciated that the total transport of a
material tracer is determined not only by the direct eddy correlation v′s ′, but also via
the mean ‘Stokes drift’. Furthermore, the distinction between ‘eddy fluxes’ and ‘Stokes
drift’ is effectively an artifact of taking zonal averages along arbitrary coordinate
surfaces, rather than taking (more rigorously correct) Lagrangian means. We note
in passing that the task of obtaining the Lagrangian mean transport directly from
numerical simulations alone is not straightforward. Moreover, the Nusselt number
(ratio of total heat transport to explicit diffusive conduction) is notoriously difficult
to simulate accurately in numerical models.

Laboratory systems offer an alternative approach, which does not suffer from the
problems of calibration or (usually) the need to invoke controversial parametrizations
of unresolved components of the flow. Visbeck, Marshall & Jones (1996) made use
of a range of laboratory experiments on baroclinically unstable convective chimneys
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as part of the validation of their study, with particular reference to the properties
of deep convection in the ocean. More relevant to the present context, Pfeffer,
Buzyna & Kung (1980) carried out a major study closely comparable to the work
reported herein, though only obtained measurements of Eulerian heat fluxes v′T ′ and
temperature variances T ′2 in a rotating thermally driven annulus, via a combination
of thermal and velocity measurements obtained with a dense network of in situ
thermistor probes distributed throughout the flow. Despite this, they covered many of
the classical regular wave regimes of the rotating annulus and the transition region
of geostrophic turbulence, though only on a nominal f -plane. There were also some
concerns over the extent to which their dense network of probes disturbed the flow,
and their results were only compared in any detail with their own weakly nonlinear
baroclinic parametrizations (Pfeffer & Barcilon 1978).

1.3. Laboratory measurements of heat transport

In the present paper, therefore, we propose a complementary approach to the
quantitative evaluation of parametrization schemes and closures. We make use of
direct determinations of the integrated transport of heat by baroclinic eddies in a
series of laboratory experiments, combined with the use of a numerical model with a
proven capability of accurately simulating the flow in such experiments to a relatively
high degree of precision. Previous experiments in a thermally driven rotating fluid
annulus have shown that the total heat transport in a baroclinically unstable flow
can be determined experimentally (via various forms of real-time calorimetry; e.g.
see Hignett 1982; Hignett et al. 1985) to an absolute accuracy better than ±2.5%,
and to a relative precision considerably better than this. The difference in total
heat transport between the measured value affected by the fully three-dimensional
flow and that obtained in a two-dimensional axisymmetric flow under otherwise
identical conditions can then be attributed to the influence of the eddies themselves –
independent of the distinction between averaged eddy correlations and ‘Stokes drift’.

Furthermore, because laboratory experiments deal with realizations of baroclinic
flows in a real physical fluid, such studies are not subject to the potential systematic
errors due to numerical approximations in (even so-called eddy-resolving) numerical
models. Thus, provided that parameter regimes and flow configurations which are
dynamically similar and relevant to the oceans can be realized in the laboratory,
such studies can provide very valuable information on the transport properties of
baroclinic flows which is highly complementary to that available by more conventional
means.

The present paper is therefore structured as follows. Section 2 describes the
laboratory system and available measurements in further detail, outlining the range
of regimes covered. Section 3 presents the corresponding numerical simulations, and
describes the ways in which these simulations are used to determine the axisymmetric
contribution to total heat transport. The main results on the dependence of heat
transport on various external parameters are presented in § 4, and the context
and significance of the results are discussed, together with concluding remarks and
suggestions for further work, in § 5.

2. Apparatus and measurements
The experimental system consisted of a differentially heated rotating annulus, in

which a fluid (typically a water–glycerol mixture of approximately 17% glycerol
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Parameter Symbol Present range Units

Rotation rate Ω 0–4 rad s−1

Temperature difference �T 4 K

Fluid properties:
Density ρ0 1043–1053 kg m−3

Thermal expansion α 3.3 × 10−4 K−1

Kinematic viscosity ν 2.1 × 10−6 m2 s−1

Thermal diffusivity κ 1.3 × 10−7 m2 s−1

Specific Heat c 3764 J kg−1 K−1

Channel geometry:
Gap width L = b − a 0.055 m
Mean fluid depth D 0.14 m

Non-dimensional:
Ekman number (equation (2.4)) E 10−5 − 10−4

Thermal Rossby number (equation (4.1)) Θ 0.01–2
Prandtl number σ (=ν/κ) 16.8

Table 1. The main parameters of the differentially heated rotating annulus experiment;
a and b are respectively the inner and outer radii of the fluid chamber.

by volume, with properties summarized in table 1) was contained between two
upright coaxial brass cylinders of radii a =2.5 cm and b = 8.0 cm respectively, and
rigid thermally insulating (Perspex), horizontal endwalls at z = 0 and z = 14.0 cm. The
annulus was rotated about its vertical axis of symmetry at angular velocity Ω . The
apparatus was designed to make accurate measurements of absolute heat transport
through the inner sidewall, by real-time calorimetry, and is described in detail by
Hignett (1982, 1985) and Hignett et al. (1985). From measurements of (i) the flow
rate of coolant water through the inner cylinder and (ii) the small difference in
temperature between the inlet and outlet of the coolant system, the total heat flux
passing through the sidewall could be determined. Leakage of heat into the system
from the apparatus environment was taken into account by carrying out a careful
series of null experiments, in which the working fluid was replaced by filling the
annular gap with a piece of solid expanded-polystyrene insulator. By this means, the
total heat transport through the inner sidewall could be determined to an absolute
precision of approximately ±2.5%.

The Nusselt number was defined by non-dimensionalizing the total heat transport
H by that due to thermal conduction through a solid of the same thermal conductivity
as the working fluid, thus

Nu =
H ln(b/a)

2πκDρc(Tb − Ta)
, (2.1)

where κ is the thermal diffusivity of the fluid, ρ its density and c its specific heat
capacity. The series of measurements include those discussed by Hignett (1982, 1985)
and others taken at around the same time which cover the regular and incipient
irregular wave regimes. More recently, a new calibration of the null state (without
the working fluid in place) was carried out (W. G. Früh, personal communication),
which resulted in a correction to Hignett’s original Nusselt numbers by a factor of
1.1165. This brings the wave results into consistent agreement with the earlier series of
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Figure 1. Variation of measured total heat transport in a rotating differentially heated annulus
with boundary layer parameter P, over the range where baroclinic waves are found to
occur. Time-averaged heat transport is shown as a Péclet number for each wavenumber m;
�, m= 2; �, m= 3; �, m= 4. The dashed line shows the variation of Pe computed in numerical
simulations of axisymmetric flow under the same conditions as the laboratory experiments,
obtained via a fit to computations shown here as asterisks.

axisymmetric measurements of Hignett (1982). The resulting measurements represent
the total heat transport averaged over 1–2 hours in each case.

The resulting measurements are listed for completeness in tables 3, 4 and 5, which
are not printed here but are available on request from the author or the Journal of
Fluid Mechanics Editorial Office, Cambridge. The results are also shown in figure 1
as a series of points plotted as Péclet number (Pe = Nu − 1) against the parameter P,
defined as the squared ratio of the boundary layer thicknesses of the sidewall thermal
boundary layer and the Ekman layer (Hignett, Ibbetson & Killworth 1981; Hignett
1982; Read 1986):

P = Ra−1/2E−1ε−3/2, (2.2)

where Ra is the Rayleigh number,

Ra =
gα�T L3

κν
, (2.3)

E is the Ekman number

E =
ν

2ΩD2
, (2.4)

and ε is the meridional aspect ratio

ε =
D

L
. (2.5)
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Also, g is the acceleration due to gravity, α is the thermal expansion coefficient,
L = b − a, D is the annulus height and ν is the kinematic viscosity. With this definition,
P has the useful property of being directly proportional to Ω . Also, as noted by
Hignett et al. (1981), Hignett (1982) and Read (1986), the parameter P provides a
clear means of establishing the quantitative role of Ekman layers in heat transport
since, when P is much less than unity, the Ekman layers can accommodate any
meridional flow forced in the buoyancy-dominated Ra1/4 sidewall thermal boundary
layers. Where P > 1, however, Ekman layers become significantly narrower than the
thermal boundary layers and inhibit radial advective heat transport. It is also at
around P � 1 that baroclinic instability tends to occur so that the baroclinic wave
regime is found for P > 1.

A major issue in the baroclinic wave regime, however, is that the total heat
transport includes contributions from both the baroclinic eddies themselves and
the axisymmetric boundary-layer circulation. In order to isolate the baroclinic eddy
contribution, therefore, it is necessary to separate this from the contribution due to the
boundary-layer-dominated circulation in the absence of baroclinic eddies. This cannot
be done readily from direct experiments, since baroclinic instability always occurs in
the parameter region P > 1 (unless special precautions are taken, e.g. using sloping
boundaries, see Hignett 1982). However, it is possible to compute the boundary-layer-
dominated axisymmetric contribution to heat transport from a numerical simulation,
and this is described in the next section.

3. Numerical model and axisymmetric heat transport
The numerical model used to compute the axisymmetric boundary-layer heat

transport is the two-dimensional axisymmetric version of the finite-difference time-
dependent Boussinesq model described by Hignett et al. (1985) and as model E of
Read, Thomas & Risch (2000). This model solves the full non-hydrostatic Navier–
Stokes equations for a Boussinesq fluid in cylindrical annular geometry, subject to
specified boundary conditions at the side- and endwalls. Conservative Eulerian finite-
difference schemes are used to ensure accurate global conservation of temperature
(potential energy) and kinetic energy.

For the present purpose, the model was run using a grid resolution of up to 96 ×
96 points in (r, z), with a stretched mesh in both r and z using a hyperbolic-tangent
stretch on lengthscales corresponding to the Ra−1/4 thermal boundary layer and
Ekman layer thicknesses. The boundary conditions corresponded to rigid non-slip
isothermal boundaries at the sidewalls, and thermally insulating conditions at the
horizontal endwalls. Under these conditions, the model has been shown (Read et al.
2000) to simulate the total heat transport in the axisymmetric regime to an absolute
accuracy at least as good as that of the experimental measurements themselves
(around ±2.5%). For each case, the model was run for a minimum of 5000 s (with
a typical timestep of 0.05 s), by which simulated time the flow had equilibrated to a
nearly steady state and residual variations in Nu were within 1% of the final mean
value.

Model runs were carried out over a wide range of Ω , covering regimes which include
both low-rotation axisymmetric flows and those where the fully three-dimensional
flow would become baroclinically unstable. The resulting simulations thus represent
valid steady-state axisymmetric solutions to the Navier–Stokes equations under the
same conditions as the fully developed baroclinic wave flows in the laboratory.
Some typical fields from a representative sample of simulations covering the very
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Figure 2. Maps in (r, z) of (a–c) temperature and (d–f ) meridional streamfunction in
numerical simulations of flow in a differentially heated rotating annulus as discussed in
the text. Simulations were carried out at three rotation rates, typical of very low rotation
rates (Ω = 0.01 rad s−1) (a, d); intermediate rotation rates (Ω = 1.0 rad s−1) (b, e); and the
high rotation regime (Ω = 3.0 rad s−1) (c, f ). Contour intervals are 0.25K for (a–c), and
(d) 0.025 cm2 s−1, (e) 0.01 cm2 s−1 and (f ) 0.005 cm2 s−1.

low-rotation, intermediate-rotation and high-rotation states are illustrated in figure 2.
Figure 2(a–c) presents the temperature cross-sections for these cases, and clearly
show the transition from a highly relaxed temperature field at low rotation rates, with
near-horizontal isotherms in the interior, to near-vertical isotherms at high rotation,
reflecting the effect of the thinning of the Ekman layers in suppressing horizontal heat
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Ω (rad s−1) E P Θ Nu

0.01 5.408 × 10−3 0.0161 6.19 × 103 11.26
0.03 1.803 × 10−3 0.0482 6.88 × 102 11.25
0.05 1.082 × 10−3 0.0804 2.48 × 102 11.23
0.1 5.408 × 10−4 0.1608 61.9 11.16
0.2 2.704 × 10−4 0.3216 15.5 11.09
0.3 1.803 × 10−4 0.4825 6.88 10.94
0.5 1.082 × 10−4 0.8041 2.48 10.07
1.0 5.41 × 10−5 1.608 0.619 7.89
2.0 2.70 × 10−5 3.216 0.155 5.4
3.0 1.80 × 10−5 4.825 0.0688 3.79

Table 2. Results of axisymmetric numerical simulations of heat transport in the rotating
annulus described in the text at Ra = 8.06 × 106.

transport. Figure 2(d–f ) shows the corresponding meridional streamfunction fields,
where the streamfunction χax is defined by

w = −1

r

∂χax

∂r
, (3.1)

u =
1

r

∂χax

∂z
, (3.2)

so that meridional flow circulates anticlockwise around local maxima in χax. The
reduction in the horizontal Ekman boundary thickness with increasing Ω is clearly
seen in figure 2(d–f ). The total heat transport in the simulations is listed in table 2 and
represents the total (advective plus conductive) transport due only to the axisymmetric
boundary layer flow. Under conditions where the flow is baroclinically unstable
in the laboratory, the numerically computed Nusselt number therefore comprises
the contribution to the fully three-dimensional total heat transport which needs
to be subtracted in order to isolate the contribution due solely to the baroclinic
eddies.

While it would have been possible in principle to carry out a model run for every
case for which experimental measurements were available, such an exercise would have
been computationally expensive and cumbersome, and so an alternative and more
flexible approach was used here which made use of the scaling theory developed
by Hignett et al. (1981), Hignett (1982) and Read (1986, 1992). As mentioned
above, according to this analysis, the axisymmetric advective heat transport depends
primarily on the boundary layer parameter P such that, at small values of P, the heat
transport due to advection (measured by the dimensionless Péclet number Pe) is then
independent of Ω and Pe is of order Ra1/4. At higher rotation rates, however, where
P > 1, Pe asymptotically becomes inversely proportional to Ω3/2 such that Pe ∼
Ra1/4 P−3/2. Based on a limited series of numerical simulations, therefore, spanning
the full range of P covered by the laboratory measurements, and with aspect ratios
and Ra equal to the mean values of the experiments themselves, we have fitted an
empirical function of the form

Pen =
A(

P3/2 + B
) , (3.3)
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Figure 3. Variation of total heat transport in axisymmetric numerical simulations of flow in
a rotating differentially heated annulus with boundary layer parameter P, covering the full
range of rotational regimes. The time-averaged heat transport for each simulation is shown
as an open circle representing the Nusselt number. The dashed line is a least-squares fit to
the individual simulations with a function of the form Nu = 1 + A/(P 3/2 + B), illustrating
the transition from the low-rotation regime (Nu independent of P) to the high-rotation state
(Pen = O(P−3/2).)

to the Péclet numbers (Pe = Nu − 1) derived from the simulations, obtaining the
values A= 40.98 ± 0.63 and B = 3.894 ± 0.085 as constants. The resulting fit for Nu is
shown in figure 3 as a dashed line, together with the values of Nu from the original
simulations, and is clearly seen as a reasonably good fit (to within 1–2% of the non-
rotating value of Nu) over the entire range of P of interest. For the purposes of this
study, therefore, we take the relationship given in (3.3) to represent the dependence
of the axisymmetric heat transport to within the precision of the experimental
measurements.

4. Results: baroclinic eddy heat transport
From the predicted axisymmetric heat transport in § 3, the axisymmetric con-

tribution to the total heat transport in the fully three-dimensional flow in the
laboratory can be isolated from the measurements introduced in § 2. The resulting
difference in heat transport must therefore represent the integrated transport
attributable to the baroclinic eddies themselves (in the form of a combination of both
a direct eddy flux and a modification of the zonally symmetric meridional transport
due to the action of the eddies). From a comparison of the measured Nusselt numbers
and the numerically predicted axisymmetric Nusselt numbers shown in figure 1, it is
clear that the difference Pexs = Nutotal − Nuax, and therefore the heat transport attrib-
utable to the eddies, increases steadily with P from a ‘critical’ value of around P ∼ 1.
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Figure 4. Variation of dimensionless excess heat transport in flow in a rotating differentially
heated annulus with boundary layer parameter P, covering the range within which regular
baroclinic waves occur. Excess Péclet number is defined as the difference between measured
total heat transport in laboratory experiments and the corresponding axisymmetric heat
transport computed in numerical simulations at the same value of P, normalized by the
conductive heat transport consistent with the fluid properties and boundary conditions. Key
is the same as for figure 1.

This is more clearly illustrated in figure 4, which shows the difference Pexs plotted
against P over the complete range over which baroclinic waves occur. The error bars
on each point here primarily indicate the uncertainty implied by the experimental
precision in measuring Nu. We see that, although the total heat transport Nutotal

remains almost constant, both in the axisymmetric and regular baroclinic wave regimes
(as previously noted e.g. by Hide & Mason 1975), the contribution attributable to the
baroclinic eddies increases directly as the contribution due to Ekman layer transports
decreases over the range P > 1. In fact the eddy contribution appears to show some
weak tendency towards saturation, and even a slight decrease at large values of P,
though this is not conclusive with the present dataset. In fact the effective eddy heat
transport, measured as an excess in Nusselt or Péclet number, is also apparently
relatively insensitive to the dominant wavenumber in the flow, though some small
differences between wavenumbers are weakly evident, with the higher wavenumbers
showing slightly larger values of Pexs for a given P.

4.1. Variations with thermal Rossby number

Differences between the transports due to differing wavenumbers are somewhat
clearer if the data are plotted with respect to the thermal Rossby number Θ ,
rather than P. Figure 5 shows the same values of Pexs plotted against Θ , defined
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Figure 5. Variation of dimensionless excess heat transport Pexs in flow in a rotating
differentially heated annulus with stability parameter or thermal Rossby number Θ , covering
the range within which regular baroclinic waves occur. Key is the same as for figure 1.

as

Θ =
gα�T

Ω2(b − a)2
. (4.1)

From this, it is clear that Pexs increases almost linearly as Θ decreases, but the
line associated with each wavenumber intersects the axis at different values. From
a least-squares linear fit of the data from each wavenumber against Θ , we can find
extrapolated values of Θ at which Pexs goes to zero, referred to hereafter as Θc. Thus,
Θc = 1.55 ± 0.05 for m =2, Θc = 1.04 ± 0.05 for m = 3 and Θc = 0.87 ± 0.06 for m =4.

It is interesting to note that these values of Θc correspond closely to the maximum
values of Θ at which each wavenumber can be obtained at comparable values of
Taylor number (e.g. see the regime diagram in Hignett et al. 1985). Thus, we may
interpret Θc(m) as the critical value of Θ for the onset of fully developed baroclinic
waves of wavenumber m.

4.2. Variations with scaled ‘supercriticality’

Following on from this interpretation, we may then plot Pexs against the baroclinic
‘supercriticality’, Θc(m)−Θ , for each wavenumber, and the result is shown in figure 6.
Each wavenumber now follows a separate curve from the origin, with a somewhat
different gradient in each case. However, the almost linear variation is now clear,
though the total excursion in the present series of measurements does not exceed an
excess Nusselt number Pexs of around 7–8. This is despite the observation that m = 2
is observed throughout the range of Θ covered, whereas m = 4 is only found for a
relatively small range of Θ .

Finally, we note that if the ‘supercriticality’ is scaled in each case by Θc(m) for
each wavenumber set, then all the measurements can apparently be reduced to a
single curve for ‘normalized supercriticality’ η = 1 − Θ/Θc. The result is illustrated
in figure 7, which clearly shows all three wavenumber curves collapsing onto a
single relationship between Pexs and η for small η(� 0.4), though some divergence
between wavenumbers is apparent for η > 0.5. The overall impression, therefore, is
that the total heat transport attributable to the presence of eddies depends rather
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Figure 7. Variation of dimensionless excess heat transport in flow in a rotating differentially
heated annulus, shown plotted with respect to a ‘critical’ stability parameter or thermal Rossby
number Θc , itself normalized by Θc , for each regular baroclinic wavenumber m= 2 (�), m= 3
(�) and m= 4 (�).

simply (almost linearly) on supercriticality, based on a dimensionless parameter which
relates directly to similar parameters (e.g. the Burger number) derived from linear
and weakly nonlinear theories for baroclinic instability, provided η is not too large.
This will be discussed in more detail in the following section.

5. Discussion
The work presented in this paper has shown that, as the effect of background

rotation increases, baroclinic waves carry an increasing proportion of the total heat
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transport in a rotating differentially heated annulus, while the direct transport by the
axisymmetric boundary-layer circulation decreases. The result may lead (at least in
some circumstances) to the total heat transport remaining almost independent of Ω

over a substantial range of rotation. Whether this is necessarily the case is a matter for
further investigation, though it would seem reasonable for the flow to try to maintain
the maximum possible heat transport (essentially set by the strength of the sidewall
thermal boundary layers – which is mainly dependent on the Rayleigh number, e.g.
as Ra1/4 for laminar conditions) until circumstances (such as secondary instabilities)
prevent the baroclinic waves from effecting the required transport (possibly suggesting
a form of ‘thermostatic adjustment’, cf. Stone 1978).

5.1. Axisymmetric and ‘eddy’ heat transports

The approach adopted here, in utilizing a fully validated numerical model to compute
the component of total heat transport due to axisymmetric motions, neatly side-
steps the (sometimes stormy) debate over how to separate ‘eddy’ and ‘zonal mean’
transports from the explicit calculation of variances and correlations. Provided we
can trust the numerical model to compute accurately the total heat transport carried
by the purely axisymmetric flow at the required combination of external parameters,
and this has been verified to better than ±2.5% in the actual axisymmetric regime
where baroclinic waves do not occur (Read et al. 2000), then the difference between the
measured heat transfer in the laboratory and the numerically determined axisymmetric
transport must be attributable to the integrated effect of the presence of fully
developed baroclinic waves. Such a result is independent of which coordinate surface
is used to evaluate zonal averages, and must therefore in some sense be regarded as
‘fundamental’ to the flow.

In many discussions of this type of problem, it is frequently asserted that baroclinic
eddies serve to transport heat horizontally to reduce the large-scale horizontal thermal
gradient, and to transport heat upwards, which helps to release potential energy and
also to enhance the mean static stability. Such mixing hypotheses are contained, for
example, within closure theories such as those due to Green (1970), Stone (1972),
Pfeffer & Barcilon (1978). Given an ability to simulate the full flow numerically, as
both an axisymmetric flow (with baroclinic instability suppressed) and a fully time-
dependent, baroclinically unstable flow in three dimensions, we can directly compare
the effects of the development of baroclinic eddies from a comparison of simulations
in two and three dimensions at the same point in parameter space.

Figure 8, for example, shows cross-sections of temperature from axisymmetric and
fully three-dimensional simulations using the model described above at a resolution
of 24 × 24 points in r and z and (in three dimensions) of 64 points in azimuth, for
conditions within the regular steady m =3 wave regime in the thermal annulus,
as discussed above. The three-dimensional run was initialized from the steady
axisymmetric state illustrated in figure 8(a) and integrated for a further period
to allow baroclinic waves to develop. The three-dimensional field in figure 8(b)
corresponds to a zonal mean section after around 2000 s of simulated time, by which
time the baroclinic instability has saturated at its fully developed (steady) amplitude.
The resulting zonal mean fields are therefore representative of a new steady state
of the system, and indistinguishable (in this case) from a space–time average. The
difference plot in figure 8(c) shows the predominant change brought about by the
development of the baroclinic eddies, in primarily reducing the horizontal thermal
gradient in the approximately quasi-geostrophic interior, and hence the baroclinicity
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Figure 8. Temperature cross-sections in (r, z) from numerical simulations of baroclinic flow
in a differentially heated rotating annulus. (a) The steady axisymmetric flow at (Θ, E) =
(0.619, 5.41 × 10−5); (b) the corresponding zonal-mean temperature field from the three-
dimensional simulation, initialized from (a) and integrated for ∼1500 s until the dominant
baroclinic waves (m= 3) have equilibrated. The difference field T (three-dimensional) −
T (two-dimensional) is shown in (c).

of the flow. In this example, the modification to the overall static stability as a result
of baroclinic instability seems relatively small. The equilibrated Nusselt number in
this simulation is ∼10.9 (cf. the measured value of ∼10.2), although the numerical
model at this comparatively modest resolution tends systematically to overestimate
the Nusselt number by ∼5% (cf. Read et al. 2000).

It is noteworthy that figure 8(b) is not a simple rearrangement of figure 8(a),
as would be expected if baroclinic transports were adiabatic. Such a conclusion is
clearly apparent from figure 8(c), which does not average to zero and indicates a net
heating of the fluid during the development of the three-dimensional flow. This is
not unduly surprising in this case, since the diagnostics of the three-dimensional flow
were computed around 1 hour later (in simulated time) than the axisymmetric flow
used as its initial condition. During this time, enhanced baroclinic transports were
able to accelerate the ‘ventilation’ of isothermal layers in the fluid in the thermal
boundary layers adjacent to the sidewalls. The net effect of the baroclinic eddy
transports is therefore not purely adiabatic when taken over a finite time interval.
Such an effect is not generally considered explicitly in geophysical applications of
eddy parametrizations, though, as in the present situation, may be far from negligible.

5.2. Transport efficiency and parameterizations based on baroclinic instability theory

From the variation of Pexs presented in § 4, we have a measure of how the efficiency of
baroclinic eddy heat transport is found to vary with external parameters throughout
the quasi-regular wave regime of the thermal annulus. From figures 4–6 we see
that Pexs generally increases with P and Θc − Θ , with a scaling which suggests the
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importance of baroclinic supercriticality Θc − Θ , and then apparently saturates at a
roughly constant (or perhaps weakly decreasing) value at the highest values of Ω .

As briefly discussed in the introduction, parametrizations of heat transport in ocean
and atmosphere models have typically represented eddy fluxes as a diffusive transport
as in equation (1.1). At least four main approaches to defining the eddy diffusion
coefficient K have generally been proposed in the literature, all of which take the
generic form (cf. Haine & Marshall 1998)

K � CEveddyµ, (5.1)

where veddy is a velocity characteristic of eddy motion, µ is a horizontal lengthscale
(like a mixing length) and CE is a dimensionless constant. The differences between
the main approaches lie in the way in which they apply results from various forms of
linear baroclinic instability theory to determine values for veddy and µ. The simplest
approach (as discussed e.g. by Gent & McWilliams 1990; Gent et al. 1995; Larichev
& Held 1995) effectively uses uniquely specified scales for Lzone, N and |∂b/∂y|,
leading to a constant coefficient K. More recently, however, schemes involving an
eddy diffusion coefficient which depends on the local properties of the mean flow
have been advocated, as outlined below.

5.2.1. Scheme A: the Green (1970) model

The most common approach (used e.g. by Visbeck et al. 1997 and Treguier et al.
1997) follows the original suggestion of Green (1970) and sets the lengthscale µ

equal to the width of the baroclinic zone Lzone, whilst taking the timescale µ/veddy

to equal the growth timescale τEady for the most unstable modes in the Eady model
of baroclinic instability (∼

√
Ri/f , where Ri is the Richardson number). As discussed

e.g. by Haine & Marshall (1998), this leads to the canonical form for K

K = CG

L2
zone

N

∣∣∣∣∂b

∂y

∣∣∣∣ , (5.2)

where CG is a constant with a value ∼0.015 − 0.025 (cf. Haine & Marshall 1998),
with essentially no dependence on rotation rate f .

5.2.2. Scheme B: the Stone (1972) model

An alternative approach, noted by Haine & Marshall (1998), invokes a slightly
different set of assumptions concerning the length- and timescales in (5.1). Following
Stone (1972), µ may be taken to equal the Rossby deformation radius, LR = ND/f ,
and veddy is taken to be a ‘typical’ thermal wind scale veddy ∼ |∂b/∂y|D/f . This leads
to the alternative form of K

K = CS

L2
zone

N

∣∣∣∣∂b

∂y

∣∣∣∣ Bu, (5.3)

where CS is a further dimensionless constant, whose value may range from around
0.42 (Haine & Marshall 1998) to 0.86 (Stone 1972), and Bu is the Burger number
(ND/f Lzone)

2. This would suggest a heat transport efficiency which decreases quite
rapidly with f , especially when the baroclinic zone is much wider than the local
deformation radius.
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5.2.3. Scheme C: the Haine & Marshall (1998) model

Haine & Marshall (1998) suggested a further variation on the above theme, defining
µ to equal the width Lzone of the baroclinic zone, and veddy to be the thermal wind
scale defined above. In the present context, this leads to the comparable canonical
form

K = Ce

L2
zone

N

∣∣∣∣∂b

∂y

∣∣∣∣ (Bu)1/2, (5.4)

with Ce∼ 0.1 according to Haine & Marshall (1998) for their numerical experiments
at Bu = 0.063.

5.2.4. Scheme D: the Pfeffer & Barcilon (1978) model

All of the schemes outlined above would appear to suggest that heat transport by
eddies should be either independent of background rotation (indicated by (5.2)) or
more or less decreasing with f ((5.3) and (5.4)) since Bu ∼ Θ/4 ∼ f −2. Whilst the
lack of a dependence on f in Scheme A might be compatible with the variation of
Pexs in the rapidly rotating irregular baroclinic wave regime applicable for P � 5,
it is clearly not consistent with the measured dependence of Pexs within the regular
wave regime for 1 � P < 5.

As mentioned above, a further alternative approach which could be in qualitative
agreement with our measurements of Pexs in the regular wave regime is suggested from
the work of Pfeffer & Barcilon (1978). They analysed the dependence of eddy heat
flux in the weakly nonlinear Eady-type baroclinic instability theory of Drazin (1972),
in which an unstable baroclinic wave grows to finite amplitude and equilibrates. The
detailed variation of equilibrated heat flux leads to a complicated dependence on
various parameters, including the wavenumber and viscous dissipation (measured by
the Ekman number), but the overall conclusion of this analysis suggests that the eddy
heat flux should scale in this regime with the square of the equilibrated amplitude of
the unstable baroclinic wave, such that

v′T ′ ∼ S

(
∂T

∂y

)2

|Buc − Bu|, (5.5)

where Buc is the critical value of Bu for the onset of linear baroclinic instability in
the Eady model. In this expression, S is a complicated function of the wavenumber,
rotation rate, geometry and fluid properties, but the form of the function deduced by
Pfeffer & Barcilon (1978) suggests that v′T ′ will increase weakly with wavenumber
m. In addition, ∂T /∂y in the above expression strictly refers to the thermal gradient
at marginal stability, and not the actual thermal gradient in the presence of the fully
developed waves. By comparison with the other schemes discussed above, however,
we can represent the predicted variation of eddy diffusivity in this model by

K � C ′
PB

L2
zone

N

∣∣∣∣∂b

∂y

∣∣∣∣ |Buc − Bu| (5.6)

or

K � CPB

L2
zone

N

∣∣∣∣∂b

∂y

∣∣∣∣ |Θc − Θ |, (5.7)

where CPB and C ′
PB are dimensionless constants, which may in turn depend on

suitably non-dimensionalized wavenumbers and the Ekman number of the flow.
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Given the provisos mentioned above, therefore, we can see that the weakly nonlinear
approach leads to an approximate expectation that baroclinic eddy heat transport
will have a linear dependence on supercriticality |Θc −Θ | and a quadratic dependence
on the lateral thermal gradient in the zonal mean. From the analyses of Hignett
et al. (1981) and Read (1986, 1992), however, the axisymmetric isotherm slope is
expected to become large but only weakly increasing with Ω in the parameter regimes
where baroclinic instability becomes prevalent. In contrast, laboratory observations
of ∂T /∂y in the regular wave regime (e.g. Pfeffer & Barcilon 1978) suggest a weak
inverse dependence of this quantity on Ω . For the purposes of the present discussion,
therefore, it may be appropriate to consider ∂T /∂y to be roughly constant within
the regular wave regime in the laboratory, in which case, the dependence indicated
in (5.5) and (5.7) could be consistent with the measurements of Pexs presented
above.

5.3. TEM parametrizations in the rotating annulus

As outlined in the introduction to this paper, an alternative view of the role of
baroclinic eddy transports is suggested from the work of Gent & McWilliams (1990),
based on the transformed Eulerian mean (TEM) approximation to the Lagrangian
mean formulation of wave–zonal flow interactions. According to this approach, the
net transport of heat (and other tracers) is represented in the Eulerian zonal mean
(along suitable coordinate surfaces, such as geopotential height or pressure) by an
additional lateral and vertical component of velocity (v∗, w∗), such that in the present
context of cylindrical geometry

v∗ =
1

r

∂

∂z

(
v′T ′

∂T /∂z

)
, (5.8)

w∗ = −1

r

∂

∂r

(
v′T ′

∂T /∂z

)
. (5.9)

This may be further represented as a meridional streamfunction χ∗, given by

χ∗ =

(
v′T ′

∂T /∂z

)
. (5.10)

As an illustration, we compare in figure 9 the meridional streamfunctions (a)
χax for the axisymmetric numerical simulation whose temperature field is shown in
figure 8(a), and (b) the streamfunction for the full transport circulation (including the
zonal mean explicit meridional flow and the TEM circulation), defined as χT = χ +χ∗,
determined from the fully three-dimensional baroclinic wave simulation shown in
figure 8(b). The difference streamfunction χT − χax, representing the extra meridional
transport attributable to the presence of the baroclinic eddies, is shown in figure 9(c),
for comparison. Note that χT − χax is approximately the same as (though not strictly
identical to) the TEM streamfunction χ∗. From this example, we can see that the
additional transport due to the presence of the baroclinic eddies, as represented in
the TEM framework by the pattern of v′T ′/(∂T /∂z) in the equilibrated flow, leads
to an additional overturning circulation in the interior of the annulus which will
transport heat roughly downgradient with respect to the zonal mean temperature
field.
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Figure 9. Cross-sections in (r, z) of the meridional streamfunction χ from numerical
simulations of baroclinic flow in a differentially heated rotating annulus. (a) χax for the
steady axisymmetric flow at (Θ, E) = (0.619, 5.41 × 10−5); (b) the corresponding zonal-mean
meridional streamfunction χT from the three-dimensional simulation, initialized from (a) and
integrated for ∼1500 s until the dominant baroclinic waves (m= 3) have equilibrated. The
difference field χT − χax is shown in (c).

The approach to parametrization of heat transport advocated by Gent &
McWilliams (1990), and being used increasingly in the oceanographic world, entails
the replacement of v′T ′ by a function of the mean flow, such as the diffusive
approximation in (1.1). As mentioned above, Gent & McWilliams (1990) employed
a form of (1.1) in which K was a specified constant, regardless of the form of the
mean flow. In the present context, however, we follow e.g. Visbeck et al. (1997) in
allowing for the possibility of a flow-dependent form for K. The pattern of χ∗ in
the three-dimensional simulation discussed above is illustrated in figure 9(c), and
would seem to suggest a correlation between χ∗ and ∂T /∂r within the flow, at
least well outside boundary layers. This is more apparent if we directly plot values
of (suitably scaled) eddy heat flux, computed in the three-dimensional simulation,
against ∂T /∂r . Figure 10 shows an example of such a correlation, derived from the
simulation shown in figures 8 and 9. For consistency with the previous discussion,
we show the quantity −v′T ′(∂T /∂z)1/2 ∼ −v′T ′N plotted against ∂T /∂r at each
model grid point throughout the meridional (r, z)-plane of the annulus lying outside
the main boundary layers. From this plot, it is clear that the scaled heat flux and
zonal mean temperature gradient are strongly anti-correlated, as suggested from all
of the simple parametrizations discussed above. In the context of Scheme A, the fit
shown in figure 10 is consistent with an implied value for CG of 0.019 ± 0.001, in
good agreement with the range suggested above by Visbeck et al. (1997) and Haine &
Marshall (1998). If we regard Scheme D as more appropriate in this case, then
CPB � 0.020 if we take Θc = 1.55 as suggested above. The clear correlation between
−v′T ′N and ∂T /∂r would seem to indicate that a Gent–McWilliams approach
to parametrization in the thermally driven rotating annulus, but based on a



320 P. L. Read

0 0.05 0.10 0.15 0.20 0.25 0.30

0.03

0.02

0.01

0

–0.01

–v
�
T
�
(∂

T
/∂

z)
1/

2

∂T/∂r (K cm–1)

Figure 10. Correlation of −v′T ′(∂T /∂z)1/2 and ∂T /∂r from the three-dimensional simulation
illustrated in figures 8 and 9 at (Θ, E) = (0.619, 5.41 × 10−5). Both quantities were computed
at each grid point in the meridional plane and plotted for all points more than 0.5 cm away
from each boundary (to exclude spurious correlations in boundary layers). The solid line
shows the result of a least-squares fit to the data of a quadratic relationship of the form
−v′T ′(∂T /∂z)1/2 = G(∂T /∂r)2 + F , where G and F are constants with values G = 0.33 ± 0.02
and F = 1.5 ± 0.5 × 10−3.

flow-dependent diffusive closure such as the schemes reviewed above, might well offer
a reasonably accurate representation of the effects of heat transport by baroclinic
waves in the laboratory.

The choice of a coefficient K in (1.1) defined for Scheme A above, together with a
weak dependence of (∂T /∂r) on Ω , for example, would be consistent in the present
context with a roughly constant value of Pexs which was independent of Ω . As
discussed above, such a result does not seem to be consistent with our measurements
of Pexs in the regular baroclinic wave regime in the laboratory which, in contrast,
appear to be more consistent with the weakly nonlinear Scheme D. However, at higher
values of Ω in the geostrophic turbulence regime, the measurements suggest that Pexs

does not continue to increase without limit, but seems to saturate or even begin weakly
to decay with Ω . In this case, one might speculate that a simpler parametrization based
on Scheme A might be applicable, though such a possibility should be investigated
thoroughly and compared with measurements in an appropriate dynamical regime,
ideally by directly implementing parametrizations in a suitable numerical model. From
the present experiments, however, the measurements do not appear to be consistent
with either Scheme B or C in any regime investigated so far, although measurements
taken much further into the fully developed geostrophic turbulence regime (and hence
over a wider range of Bu) are really needed to confirm this.

5.4. Concluding remarks

In the present study, we have taken the first steps towards demonstrating a novel and
insightful approach to the quantitative determination of the role of baroclinic eddies
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in transporting heat in a differentially heated rotating fluid in the laboratory. The
combined approach, using both laboratory calorimetric measurements and numerical
simulations, allows an unambiguous assessment of the heat transport attributable to
baroclinic eddies, even when heat is being carried in the full system via a variety of
differing mechanisms.

The results presented here, together with the discussion of the previous subsections,
indicate that an approach to the parametrization of baroclinic eddy transports along
the lines of that suggested by Gent & McWilliams (1990) may offer significant promise.
In future work, therefore, it will be desirable (a) to investigate the robustness of the
present results in other baroclinically unstable systems, including an exploration of
flows which are much more strongly supercritical than covered in the present work,
and (b) to investigate more closely the extent to which a practical parametrization
of χ∗ based on zonal mean fields and knowledge of external parameters may be
feasible and/or appropriate. With respect to (a), further laboratory experiments
covering a wider range of external parameters and/or boundary conditions, and for
which accurate total heat transport measurements are obtainable, would be extremely
useful. For (b), it will be necessary to carry out further numerical modelling studies,
both to diagnose the heat transport in other fully three-dimensional simulations and
to implement and evaluate suitable parametrizations in an otherwise two-dimensional
axisymmetric model. Such studies might also enable an evaluation of the extent
to which this approach could be applied to a prediction of the transport of other
quantities, such as potential vorticity, material tracers or angular momentum.

Finally, one might hope that the successes derived from applying this approach to
the differentially heated annulus would be transferable to a range of other systems,
including zonally symmetric or time-averaged models of planetary atmospheres
or oceans, and in the design of various forms of rotating machinery for which
a parametrization of non-axisymmetric transports could have significant practical
value.
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